
Computational Identification of Ovarian Cancer 

Candidate Driver Genes with Mutated Protein 

Structures Caused by Missense Variants 

Ian Hou1 and Yongsheng Bai2,3,* 

1 The John Cooper School, The Woodlands, Houston, USA 
2 Next-Gen Intelligent Science Training, Ann Arbor, MI, USA 

3 Department of Biology, Eastern Michigan University, Ypsilanti, MI, USA 

Email: ihou651088@gmail.com (I.H.); bioinformaticsresearchtomorrow@gmail.com (Y.B.) 

*Corresponding author

Abstract—Ovarian cancer detection remains elusive due to a 

lack of screening tests and non-specific symptoms. A crucial 

factor in cancer development is DNA sequence mutations, 

particularly missense mutations that can alter protein 

structure, thereby potentially initiating carcinogenesis. 

Advances in sequencing technology have paved the way for 

detailed analysis of individual genetic profiles, spotlighting 

genes with missense mutations as prospective biomarkers. 

Such biomarkers are pivotal for personalizing cancer 

therapies, as they can guide medication choices, ensuring 

efficacy and minimizing detrimental effects. Despite tools 

like AlphaFold predicting 3D protein structures and Phyre2 

assessing mutated amino acid impacts, no model 

concurrently predicts wild-type and mutated protein 

structures. Also, integrating structure changes with drug 

target identification remains under-explored. Analyzing the 

TCGA Ovarian Cancer transcriptome data, this research 

postulated that missense mutations in highly expressed 

genes significantly influence protein structure, earmarking 

these genes as potential therapeutic targets. Twelve genes 

were discerned to affect ovarian cancer patient survival 

rates. An original platform, MiSeVis, was introduced, 

offering insights into potential drug targets for specific 

genes, survival analysis, and 3D protein structure 

alterations. This comprehensive methodology, unifying 

transcriptome analysis, pinpointing genes with impactful 

missense mutations, and presenting a user-centric 

visualization tool, marks considerable progress in ovarian 

cancer treatment and precision medicine.  

Keywords—ovarian cancer, missense mutations, sequencing 
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I. INTRODUCTION

Ovarian cancer detection poses significant challenges, 

primarily due to several factors, such as a lack of a 

screening test and vague, non-specific symptoms, making 

it difficult to identify the disease in its early, more 

treatable stages. One of the key drivers of cancer 

development is mutations in the DNA sequence of the 
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genome. A mutation is a change in the DNA sequence of 

the genome that may lead to the development of cancer. 

A missense mutation can cause a change in protein 

structure and its function, thus transforming normal cells 

into cancerous ones. These deleterious mutations have a 

higher probability of changing protein stability and 

pathogenicity, making them particularly valuable for 

early cancer detection [1]. Recent advancements in 

sequencing technology have ignited hope for the early 

detection of ovarian cancer. These breakthroughs enable 

researchers to delve into the genetic makeup of 

individuals and their tumors, shedding light on specific 

candidate genes with missense mutations. Identification 

of these genes is becoming increasingly vital [2], as they 

may serve as potential biomarkers. 

In a previous study, the author adopted a large-scale 

protein-based model to predict functional and structurally 

disruptive variant effects and identified several Single 

Amino-acid Variants (SAVs) for gold-standard candidate 

genes [3]. These types of disruptive variants often affect 

protein stability, which will consequently alter protein 

structure and function. Existing cutting-edge tools that 

utilize machine learning methods such as AlphaFold can 

predict the 3D structures of proteins, including mutated 

ones with high confidence [4]. AlphaFold is an artificial 

intelligence-based system designed to predict 3-

dimensional structures of proteins based on their amino 

acid sequence. The prediction confidence is quantified 

using a confidence score known as the predicted Local 

Difference Distance Test (pLDDT) score. Additionally, 

the tool Phyre2 builds 3D structures by assessing the 

impact of amino acid sequences including mutated 

sequences. Users can input protein sequences into the 

web server to generate these structural predictions [5]. 

Each cancer patient has a unique set of mutations, 

which can serve as specific biomarkers. These 

biomarkers are essential for tailoring cancer treatment 

strategies and realizing personalized medicine. For 

example, they may help identify drugs that are likely to 

be ineffective or even deadly to the patient, allowing 

doctors to administer specific drugs that may interact 
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with or change protein structure function. Different 

clinical studies have also been conducted to evaluate the 

role of biomarkers in drug development. Finding 

prognostic biomarkers requires knowledge of tumor and 

host immune system interactions [6]. 

TIMER2.0, a widely used bioinformatics database, has 

been developed to elaborate tumor and host interactions 

in the tumor microenvironment through The Cancer 

Genome Atlas (TCGA) database analysis [7]. The 

existing studies suggested that personalized 

immunotherapeutic treatment strategies are important in 

targeting anatomical sites and biomarkers due to unique 

reaction mechanisms for different immune cell types [8]. 

However, there is a lack of generalized models that can 

simultaneously predict the structure of both wild-type and 

mutated proteins due to missense variants. In addition, 

identifying drug targets based on candidate biomarkers 

has not been explored in the context of the structure 

changes. It’s worth noting that predicting the structure of 

larger mutated proteins requires higher processing power 

and subsequently longer queue time. Furthermore, 

analysis of databases such as cBioPortal and Phyre2 

requires expertise in identifying genomic markers and 

other uses for each database. A stand-alone downloadable 

visualization platform that allows users to access these 

results easily is an ideal solution.  

In this project, the author initially analyzed TCGA 

Ovarian Cancer transcriptome sequencing data to select 

highly expressed genes with their missense mutations. 

The hypothesis was that missense mutations occurring in 

highly expressed genes are likely to affect the protein’s 

structure, making the host genes potential therapeutic 

targets. This study has identified 12 candidate genes 

highly expressed in ovarian cancer patients that either 

lower or raise the survival rate of these patients. MiSeVis, 

an innovative R-Shiny-based platform developed in this 

project, enables users to report potential drug targets for a 

given gene, output a survival analysis graph, and observe 

changes in 3D protein structure, providing invaluable 

insights into the potential functional consequences of 

these genetic variations. This integrated approach through 

combining transcriptome analysis, identification of highly 

expressed genes with missense mutations, and the 

development of a user-friendly visualization platform, 

represents a significant step forward in the quest for 

effective ovarian cancer therapies and precision medicine. 

The MiSeVis software platform is freely available on 

the web at https://github.com/IHou594/MiSeVis. 

II. MATERIALS AND METHODS 

A. Candidate Gene Selection and Mutated Sequence 

Generation 

The author first explored the National Cancer Institutes 

Database — The Cancer Genome Atlas and identified 44 

genes with high expression in ovarian cancer, as revealed 

by the TCGA ovarian cancer dataset. After searching the 

Ensembl and Alphafold databases to retrieve the amino 

acid sequences of these genes, the ovarian cancer datasets 

and the Pan-Cancer analysis of the whole genome dataset 

from NCBI cBioPortal were downloaded as well. By 

inserting the mutation information from cBioPortal using 

a custom script the author wrote to generate novel 

mutated sequences, both the wild-type and mutated 

sequences were fed into Phyre2 for 3D structure analysis. 

The genes that showed a protein structure change due to 

missense mutations were kept for the next step of the 

analysis. 

B. Drug Target Identification, Immune Infiltration, and 

Survival Analysis of Candidate Genes 

The author searched DrugBank to investigate available 

drug targets of these 44 genes with the predicted protein 

structure changes by Phyre2, and those with drug targets 

were recorded. The R package survival (version 3.5-7) 

was used to create the Kaplan Meier survival plot to 

identify candidate genes that affect patient survival. The 

gene immune infiltration analysis was conducted for the 

44 candidate genes using TIMER2.0 to pinpoint genes 

correlated with OV-infiltrating Immune Cell Types. 

Specifically, correlation scores were calculated for 

various in vitro immune cell types of ovarian cancer. The 

author subsequently selected immune infiltrates such as T 

Cell CD8, T Cell CD4, dendritic cell, B cell, neutrophil, 

and macrophage to check each candidate gene and 

analyzed their association between gene expression and 

immune infiltration level. 

C. Development of the MiSeVis platform 

To facilitate the broader scientific community’s usage, 

The author wrote a custom script and developed a 

convenient platform named MiSeVis using RShiny. The 

complete workflow of the analysis is shown in Fig. 1. 

 

Fig. 1. Workflow of identifying ovarian cancer driving genes. 

III. RESULT AND DISCUSSION 

A. Association Analysis between Immune Infiltrates and 

Gene Expression in TCGA 

Out of the 44 genes that were obtained from the 

Cancer Genome Atlas, 12 candidate genes have been 

demonstrated to affect cancer probability through 

analysis of multiple databases, including Phyre2 and 

DrugBank. Among these candidates, five drug targets 

(DB01593, DB09130, DB14487, DB14533, and 

DB14548) were found to be recurring three times each 

(Table I). 

The author obtained four oncogenes (COL3A1, FN1, 

CLU, FTL) and 6 tumor suppressor genes (GNAS, UBC, 

EEF2, PSAP, TUBA1B, HSP90AB1) based on the TCGA 
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patient RNA-seq data. The remaining genes do not have a 

clear tumorigenesis classification.  

TABLE I. PREDICTED 3D STRUCTURES FOR THE MUTATED CANDIDATE 

GENES USING PHYRE2 AND POTENTIAL DRUGBANK IDS 

Gene 

Name 

Phyre2 

Prediction 

Structural 

Change 
Drug Bank Target 

ACTG1 Available Y DB09130; DB11638 

EEF1A1 Available Y 

DB01593; DB04315; DB09130; 

DB11638; DB14487; DB14533; 

DB14548 

FTL Available Y 
DB00893; DB02285; DB09147; 

DB09517; DB13995 

COL3A1 Available Y DB00048 

FN1 Available Y 
DB01593; DB06245; DB08888; 

DB14487; DB14533; DB14548 

CLU Available Y 
DB01593; DB09130; DB14487; 

DB14533; DB14548 

PSAP Available Y DB01966 

TUBA1B Available Y 
DB01873; DB03010; DB05147; 

DB07574 

HSP90AB1 Available Y 

DB02424; DB02754; DB03758; 

DB05134; DB06070; DB07594; 

DB07877; DB08045; DB08153; 

DB08292; DB08293; DB08346; 

DB08464; DB08465; DB09221 

GNAS Available Y DB02587; DB06843 

UBC Available Y DB04464 

EEF2 Available Y 
DB02059; DB03223; DB04315; 

DB08348; DB11823; DB12688 

TABLE II. SURVIVAL ANALYSIS RESULT AND IMMUNE CELL TYPE 

CORRELATION ANALYSIS FOR THE  GENES  

Gene 

Name 
UALCAN Result T Cell CD8 Neutrophil 

ACTG1 Not Clear −0.003 0.117 

EEF1A1 Not Clear −0.17 −0.193 

FTL Oncogene 0.116 0.13 

COL3A1 Oncogene 0.191 0.177 

FN1 Oncogene 0.166 0.296 

CLU Oncogene 0.167 −0.086 

PSAP Tumor Surpressant 0.256 0.368 

TUBA1B Tumor Surpressant 0.005 0.212 

HSP90AB1 Tumor Surpressant −0.122 0.013 

GNAS Tumor Surpressant 0.028 −0.061 

UBC Tumor Surpressant 0.222 0.205 

Note: Red numbers indicate statistically significant positively correlated 

values while blue numbers represent statistically significant negative 

correlations. 

 

The immune association analysis revealed that most 

oncogenes exhibit a positive correlation with immune 

infiltrate CD8 and neutrophil immune cell type, whereas 

tumor suppressor genes don’t generally exhibit such 

trends (Table II). These trends are shown on TIMER2.0 

as a heat map table representing variations in immune 

infiltration levels between tumors with mutations in the 

input gene and tumors without mutations in the input 

gene. Additionally, the results indicated differential 

expression of oncogenes in the immune infiltrate CD8 

and neutrophil when compared to other immune cell 

types (data not shown). Furthermore, these results were 

cross-examined with those from The University of 

Alabama at Birmingham Cancer Data Analysis Portal 

(UALCAN), a web source for accessing publicly 

available cancer data, performing gene expression 

analysis, etc. 

B. Survival Analysis of Cancer Biomarkers 

Kaplan-Meier survival analysis was conducted to 

further evaluate the clinical implications of the candidate 

genes. These analysis modules have been integrated into 

the bioinformatics software that was developed, MiSeVis. 

An illustrative example of oncogene classification is 

shown in Fig. 2. 

 

Fig. 2. Kaplan-Meier survival analysis of tumor suppressor gene PSAP 

expression (high vs. low) on overall survival in ovarian cancer. 

Table III shows that some oncogenes are recurrently 

mutated and have the same amino acid positions. 

Although tumor suppressor genes also mutated at the 

same amino acid positions, there are also mutations 

through protein truncating alterations. This result is 

consistent with previous published studies [9]. 

TABLE III. PROTEIN MISSENSE MUTATION INFORMATION FOR 

ONCOGENES AND TUMOR SUPPRESSOR GENES 

Gene Name Mutation Location 

COL3A1 
G243E; G294E; V529F; G1041V; G1128C; 

A1203T; K1407R 

FN1 
M119T; R222C; C258Y; Q792E; S390L; 

S1340N; P1584A; T2163S; T2254S; D2331 

CLU W110C; R198W; P234L 

PSAP P294S; G480R; C482F 

EEF1A1 W58*; H95Qfs*15 

GNAS T90A; Y163*; F273L; GNAS-IGF2 FUSION 

UBC 

G35Dfs*15; I36Sfs*38; D52N; D52Nfs*34; 

E64K; G111Dfs*15; L112Sfs*15; 

G162SL208V; T387Hfs*9 

EEF2 G31C; L315V; I451S 
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C. MiSeVis: An R-Shiny Based Application of Modeling 

3D Protein Structures and Predicting Drug Targets 

of Cancer Biomarkers 

Using previous research results, the author created a 

convenient platform called MiSeVis using R-Shiny by 

combining all analysis steps. MiSeVis features a protein 

visualization function wherein users can choose a PDB 

file and visualize the 3D representation of the protein’s 

structure. Users have the flexibility to choose between 

mutated and non-mutated files and scrutinize the exact 

mutation locations using various imaging options. 

Additionally, the platform has a function that allows users 

to view the contents of both FASTA and PDB files and 

input their own files as well. As an illustrative case study, 

the author visualized a gene Prosaposin (PSAP) with a 

mutation at amino acid position 469. The software clearly 

showed how the protein structure is altered and reported 

its drug targets. 

1) MiSeVis RShiny tool implementation 

This pipeline not only outputs the contents of an 

inputted sequence and structure file but also enables users 

to visualize 3D models of a PDB file (Fig. 3). Users can 

manipulate the model’s parameters, analyze individual 

amino acids through the generated model, and search for 

drug matches in the DrugBank database based on their 

selection of the PDB visualization file. 

 

Fig. 3. Overview of RShiny GUI for MiSeVis. 

2) Retrieve sequence file 

The “Structure File” tab operates like the “Sequence 

File” tab, except the required file type (Fig. 4). In the 

“Structure File” tab, users are required to upload a 

Protein Data Bank (PDB) file, rather than a FASTA file, 

to ensure accurate processing and display of structural 

information. On the “Retrieve Sequence” Tab, there are 

two options for file input: A Sequence file and a Structure 

file. In the Sequence File section, there is a button 

accessible via the “Click to Show Upload Option” button, 

which allows users to upload a file from their local 

computer. It’s important to note that the uploaded file 

must be in FASTA format to ensure proper rendering of 

the inputted FASTA file. Users may click on the “Clear 

Sequence” button to clear the sequence shown or the 

“Clear PDB” button to get rid of the output of the 

Structure File tab. The “Structure File” tab works very 

similarly to the “Sequence File” tab except the required 

file type. Users are required to upload a Protein Data 

Bank file instead of a FASTA file. 

Moreover, the user has the option to clear the 

displayed sequence by clicking the “Clear Sequence” 

button or eliminate the output from the “Structure File” 

tab by clicking the “Clear PDB” button. 

 

Fig. 4. Example of sequence retrieval in MiSeVis. 

3) Visualize PDB file 

The “Visualize PDB” tab allows users to examine and 

modify the 3D model of the inputted gene (Fig. 5). To 

begin, users must select a gene in the “Choose a Gene to 

Visualize” dropdown menu. Then, they need to specify 

whether they would like to view the normal or mutated 

structure of the gene. The 3D visualization will then 

appear automatically, enabling users to navigate the 

model using their cursor to explore the different sides of 

the model. Furthermore, since the model is based on the 

specified quaternary structure of the PDB file, users can 

hover over individual segments of the protein and 

observe specific amino acids at precise locations in the 

amino acid sequence. Users also have the option to 

highlight certain sections of the protein by clicking the 

“Manipulate the 3D Visualization” button. The first 

parameter is the amino acid selection, which allows the 

user to define the range of highlighted amino acids. The 

second parameter is the representation type for the 

highlighted amino acids. The third parameter specifies 

the color of the highlighted regions in the protein. The 

“Add” button will add the specified parameters while the 

“Remove” button will remove them. Finally, users can 

visualize the surface of the entire 3D model by clicking 

the “Click to Show Protein Surface” button. However, 

it’s essential to have the type parameter set to “surface” 

for this button to function properly. 
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Fig. 5. Example 3D protein structure generation from PDB file. 

4) Check DrugBank 

The Check DrugBank tab is used to identify drug 

targets for specific genes using information from the 

DrugBank database (Fig. 6). By inputting a gene name, 

users can output the DrugBank IDs of different drugs by 

typing in the gene name and then clicking on the “Output 

Drug Targets” button. This tab allows users to find drug 

targets for each candidate gene, giving them information 

on the main panel that will display the drug IDs that are 

linked to the queried gene. 

 

 

Fig. 6. Drug target retrieval using DrugBank. 

5) Survival analysis 

The survival analysis tab is designed to assess the 

effect of gene expression levels on survival rates. Users 

can perform this analysis simply by providing the gene 

name. The main panel will then display the corresponding 

survival plot for the selected gene. The survival plots 

generated will always include survival probability and 

time, as well as different lines for gene expression if 

available. These plots are automatically generated using 

the R survival library. For instance, Fig. 7 below depicts 

the overall survival probability over time for ovarian 

cancer patients with high and low PSAP gene expression. 

 

Fig. 7. Survival analysis of ovarian cancer patients based on PSAP gene 

expression. 

6) Missense mutation analysis 

Fig. 8 below shows missense mutations portrayed by 

the PDB file. The specified amino acid location, which is 

taken from cBioPortal, is found in the fifth column of the 

PDB file, and the two files show a missense mutation in 

that position. This missense mutation is reflected in the 

generated 3D protein structure graph, as the segment of 

the protein highlighted in the diagram is different 

between the wild-type and mutated protein. This 

difference also reflects a possible biomarker, as many 

patient samples from the ovarian cancer dataset of 

cBioPortal have this mutation. 

 

Fig. 8. Mutation comparison from PDB files and 3D protein structure 

for PSAP. 

IV. CONCLUSION 

This study implemented a user-friendly tool designed 

to identify drug targets for queried genes. The tool offers 

the capability to access the contents of both FASTA and 

PDB files, as well as the flexibility to upload the user’s 

files as well. Additionally, this software includes a 

protein visualization function with which the user can 

choose a PDB file and visualize the 3D protein structure, 

which also shows some missense mutations that impact 
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the protein structure. Users can also choose between 

mutated and non-mutated files, exploring the exact 

locations of the mutations with various imaging options. 

Kaplan-Meier survival analysis was also conducted to 

evaluate the clinical implications of the candidate genes. 

All these analysis modules have been seamlessly 

integrated into the bioinformatics software called 

MiSeVis that was developed for this study. 

Preliminary results have identified 26 genes with 

potential drug targets. Among them, several genes 

exhibited a significant impact on the survival rate of 

ovarian cancer patients when expressed at high levels. 

This indicates that the highly expressed genes with 

altered protein structures due to missense mutations may 

serve as valuable biomarkers for ovarian cancer treatment. 

Further functional annotation studies are underway to 

validate the association between these prioritized genes 

and ovarian cancer. Future work will involve comparing 

prediction results across different genders and racial 

groups. These findings have the potential to guide 

medical researchers in prioritizing drug targets and 

advancing treatment strategies for ovarian cancer. This 

gene prioritization approach applies to other types of 

cancer as well, and the pipeline will be expanded and 

enhanced in the future by adding more functionalities.  

In summary, this study successfully identified genes 

with pathogenic implications in ovarian cancers through 

comprehensive bioinformatics analysis. Additionally, a 

user-friendly R-Shiny tool called MiSeVis was developed, 

enabling users to visualize 3D protein structure changes 

and identify potential therapeutic drug targets for specific 

genes. MisSeVis has the unique capability to visualize 

both wild-type and mutant protein structures concurrently, 

making it a valuable asset for identifying candidate genes 

resulting from variant-causing structural alterations. This 

tool holds the potential to guide medical researchers in 

determining the most effective treatment based on the 

precise alterations in the protein structures that make up a 

person’s particular collection of biomarkers. Scientists 

can also use these specific biomarkers to develop drugs 

that specifically target them. 
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